Tuesday, 16 September 2014

Diffie-Hellman

Introduction


In this post you can find an implementation of Diffie-Hellman protocol as well as a brute-force attack against it, which try to recover a private key.


At least in this method has 2 users that will establish a communication in an insecure channel. First they need to generate their keys (never share with someone) and a shared private key. Key is necessary for interchange information in a "secure" way.[1]

I said secure, because the security is based in the computational complexity to realize the inverse operation.

Functions

First Alice and Bob choose together a prime number (p). The value of p is between numMin(implementation used 1000000) and numMax(99999999). The reason for I used that numbers is because when I used larger numbers time increased.
This table shows an example of time using differents min,max numbers.
min max time users* time hacker* x y
1000000 99999999 0.000108957290649 13.1109771729 2985883 5265807
10000000 999999999 8.70227813721e-05 1.526652813 110939030 188011157
100000000 9999999999 0.000119924545288 312.937700033 4988719808 3646574494
1000000000 99999999999 0.000176906585693 ? more than 20 minutes 3254651267 7594893842
*time in seconds

def genNumPriRan(numMin,numMax):
    while True:
        num = random.SystemRandom().randint(numMin,numMax)
        if esNumeroPrimo(num) == 1:
            return num
 
After they will choose a generator of p (g ∈ Zp). The way to create a generator is:
  1. Get the factors of g (Fi, where i = n-element)
  2. g raised to the power of each factors.  gFi mod p
  3. If  gFi is different to 1 is a generator.
 
def esGenerador(p,g):
    i = 2
    while i < (p - 1):
        if (p - 1) % i == 0: #prueba con todos los factores de p
            if expModRap(g,i,p) == 1:
                return 0 # no es generador
        i =+ 1
    return 1 # si es generador


Each one (Alice and Bob) chooses a private number.

def clavePrivada(self):
        return random.SystemRandom().randint(999,(self.p - 1))


Alice and Bob send for a insecure channel the result of:
Alice to Bob
f(x) =  gx mod p
Bob to Alice
f(y) =  gy mod p


def generarFXFY(self, pot):
        return funciones.expModRap(self.g, pot, self.p)

expModRap calculates in a fast way the exponentiation.

def expModRap(a,b,n):
    res = 1
    pot = a % n
    while b > 0:
        if (b % 2) == 1: # si es impar
            res = (res * pot) % n
        b = b / 2
        pot = (pot * pot) % n
    return res


When Alice and Bob have f(x) and f(y), calculate K,shared private key.
def generarClave(self,funcion,pot):
        return funciones.expModRap(funcion, pot, self.p)

Brute-force attack
For get private keys (K and x or y), the hacker only has: g,p, f(x),f(y). So, he tries to get f(x) or f(y) doing:
f(n) =  gi mod p
where:
i = 1, ..., p - 1 (x, y < p - 1)
f(n) = f(x) or f(y)


def buscarClavePrivada(self, fx, fy):
   for i in xrange(2,(self.p - 1)):
       privada = funciones.expModRap(self.g, i, self.p)
       if privada == fx:
           clvPrv = funciones.expModRap(fy, i, self.p)
           print "K = ",clvPrv,"\nx = ", i
           return 0
       if privada == fy:
           clvPrv = funciones.expModRap(fx, i, self.p)
           print "K = ",clvPrv,"\ny = ", i
           return 0


Code
Basic functions funciones.py
Diffie-Hellman functions difhel.py
Main function principal.py

 

Implementation 

Alice key x =  5639834 
Bob key y =  28315101
Shared private key = 11351414
Hacker found:
K =  11351414, x =  5639834
Alice key x =  26265031 
Bob key y =  22491049
Shared private key = 8590783
Hacker found:
K =  8590783, y =  22491049

Bibliography

  1. S/A WolframMathWorld [online] Updated: 2014. [Accessed: October 8th 2014]. Available in: http://mathworld.wolfram.com/Diffie-HellmanProtocol.html
  2. Elisa Schaeffer. Class presentation [online] Slides: 77,78. [Accessed: October 8th 2014]. Available in: http://elisa.dyndns-web.com/teaching/comp/sec/diap.pdf

2 comments:

  1. falta toda la explicación y los ejemplos de ejecución

    parece faltar el hackeo también

    ReplyDelete
  2. Aspectos que ganan puntos:

    +1 written in English
    +1 adequacy of p & g verified
    +1 Alice and Bob get their keys
    +1 the hacker gets the key
    +1 execution time examined in terms of the magnitude of p
    +1 example runs provided
    +1 Alice and Bob are different objects

    Multas que pierden puntos (cosas que ya les he dicho que HAY QUE CUIDAR):

    -1 texto copiado de páginas web y/o libros
    -1 errores de ortografía y/o gramática
    -1 capturas de pantalla de texto en el terminal

    Advertencias (si se repiten en tareas posteriores, serán multas completas):

    No aplican en tu caso.

    => Obtuviste 7 - 3 = 4 del máximo de 7 puntos.

    Comentarios:

    Pon los [X] de las referencias dentro de las frases.
    Podría ser bueno leer un guía de estilo de citar en las ciencias computacionales.

    Revisa los espacios cerca de la puntuación (especialmente paréntesis).

    Usa un checador de ortografía / gramática. Hay muchos disponibles en línea.

    Igual podrías sacar los factores de p para examinar si g sirve.
    (Ahora tu explicación habla de factores pero el código no los saca.)

    ReplyDelete